Improved Heinz inequality and its application
نویسندگان
چکیده
* Correspondence: limin-zou@163. com School of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing 404100, People’s Republic of China Abstract We obtain an improved Heinz inequality for scalars and we use it to establish an inequality for the Hilbert-Schmidt norm of matrices, which is a refinement of a result due to Kittaneh. Mathematical Subject Classification 2010: 26D07; 26D15; 15A18.
منابع مشابه
Improved logarithmic-geometric mean inequality and its application
In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.
متن کاملA Generalized Singular Value Inequality for Heinz Means
In this paper we will generalize a singular value inequality that was proved before. In particular we obtain an inequality for numerical radius as follows: begin{equation*} 2 sqrt{t (1-t)} omega(t A^{nu}B^{1-nu}+(1-t)A^{1-nu}B^{nu}) leq omega(t A + (1- t) B), end{equation*} where, $ A $ and $ B $ are positive semidefinite matrices, $ 0 leq t leq 1 $ and $ 0 leq nu leq frac{3}{2}.$
متن کاملImproved Cramer-Rao Inequality for Randomly Censored Data
As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...
متن کاملFuruta Inequality and Its Related Topics
This article is devoted to a brief survey of Furuta inequality and its related topics. It consists of 4 sections: 1. From Löwner-Heinz inequality to Furuta inequality, 2. Ando–Hiai inequality, 3. Grand Furuta inequality, and 4. Chaotic order. 1. From Löwner-Heinz inequality to Furuta inequality. The noncommutativity of operators appears in the fact that t is not orderpreserving. That is, there ...
متن کاملImprovements of Young inequality using the Kantorovich constant
Some improvements of Young inequality and its reverse for positive numbers with Kantorovich constant $K(t, 2)=frac{(1+t)^2}{4t}$ are given. Using these inequalities some operator inequalities and Hilbert-Schmidt norm versions for matrices are proved. In particular, it is shown that if $a, b$ are positive numbers and $0 leqslant nu leqslant 1,$ then for all integers $ kgeqsl...
متن کامل